Images as graphs

* Fully-connected graph
— node for every pixel
— link between every pair of pixels, p,q
— similarity wj; for each link

Source:; Seitz

Segmentation by Graph Cuts

* Break Graph into Segments
— Delete links that cross between segments

— Easiest to break links that have low cost (low similarity)
* similar pixels should be in the same segments
 dissimilar pixels should be in different segments

Source:; Seitz

Measuring Affinity

Intensity aff (x,y) = eXP{—ﬁHf (x) -1 (-7"’)“2}

Distance aff (x,») = exp{—ﬁHx -y

Color aff () =exp{=ts dist (), ()|

1
(some suitable color space distance)

Texture aff (x,y)= eXp{——Hf(x) J () }

(vectors of fl Iter uutputs)

Cuts in a graph

e Link Cut

— set of links whose removal makes a graph disconnected
— cost of a cut:

cut(A,B) =) cpg
pEA,qEB

One idea: Find minimum cut
e gives you a segmentation
 fast algorithms exist for doing this

Source:; Seitz

But min cut is not always the best cut...

I
!
!

o %o o
..... : ® @ Mincut 2
8 | o

ee00 o ®
8 |
. ‘ ! .
- .. . P
! e
©0 g0 ¢ ® ® Min-cut 1
: |
!

Cuts in a graph

Normalized Cut
« a cut penalizes large segments
 fix by normalizing for size of segments

cut(A, B) cut(A, B)

Ncut(A,B) =
cut() volume(A) wvolume(B)

« volume(A) = sum of costs of all edges that touch A

Source:; Seitz

Finding Minimum Normalized-Cut

* Finding the Minimum Normalized-Cut is NP-
Hard.

* Polynomial Approximations are generally
used for segmentation

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Finding Minimum Normalized-Cut

W = N x N symmetricmatrix, where

el gl e jen

WQj =1 |
0 otherwise

\

F — Fj‘ = Image feature similarity

X; — X ;| = Spatial Proximity

D = N x N diagonal matrix, where Di =YW j
j

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Finding Minimum Normalized-Cut

e It can be shown that yTO-WY

such that -
vy & Kb :D<b£1, andy' D1=0

 Ifyisallowed to take real values then the minimization can
be done by solving the generalized eigenvalue system

O-W y =Dy

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Algorithm

* Compute matrices W & D

« Solve ©-Wy=iDy for eigen vectors with the smallest eigen
values

 Use the eigen vector with second smallest eigen value to
bipartition the graph

 Recursively partition the segmented parts if necessary.

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Recursive normalized cuts

1. Given an image or image sequence, set up a weighted
graph: G=(V, E)
— Vertex for each pixel
— Edge weight for nearby pairs of pixels

2. Solve for eigenvectors with the smallest eigenvalues:
(D - W)y =ADy
— Use the eigenvector with the second smallest eigenvalue
to bipartition the graph
— Note: this is an approximation

4. Recursively repartition the segmented parts if
necessary

Details: http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Normalized cuts results

Graph cuts segmentation

The st-Mincut Problem

*An st-cut (S,T) divides the nodes between
source and sink

* The cost of the cut is the sum of costs of
all edges goingfromSto T

* The st-min-cut is the cut with lowest cost

Each node is either assigned to the source S or
sink T

« The cost of the edge (i,)) istaken if (ieS) and (jeT)

The st-Mincut Problem

*An st-cut (S,T) divides the nodes between
source and sink

* The cost of the cut is the sum of costs of
all edges goingfromSto T

The st-min-cut is the cut with lowest cost

Each node is either assigned to the source S or
sink T

The cost of the edge (i, j) is taken if (ieS) and (jT)
5+2+9=16

Min-cut\Max-flow Theorem

In every network, the maximum flow
equals the cost of the st-mincut

Max flow = mincut=7

Next: the augmented path algorithm for
computing the max-flow/min-cut

Maxflow Algorithms

Flow =0

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Maxflow Algorithms

Flow =2

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Maxflow Algorithms

Flow =2

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Maxflow Algorithms

Flow =6

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Maxflow Algorithms

Flow=6+1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Maxflow Algorithms

Flow =7 Min-cut=7

Markov Random Fields

Node y;: pixel label

/
Edge: constrained
pairs
P—
Cosrt] tq aslsign a label to Cost to assign a pair of labels to
each pixe \ connected pixels \

Energy(y; 6, data) = Zwl(y,,é? data) > w,(y;y;:0,data)

I, jeedges

Solving MRFs with graph cuts

Source (Label 0)

oassignto 0

Cost to split nodes

Sink (Label 1)

Energy(y;0,data) = > w,(y;;0,data) > w,(y;,y;:0,data)

I, jeedges

Solving MRFs with graph cuts

Source (Label 0)

Cost to split nodes

Costto assignto 1
Sink (Label 1)

Energy(y; 6, data) = Zwl(y,,é? data) > w,(y;y;:0,data)

I, jeedges

GraphCut for a Monochrome Image

« Userprovides atrimap I'={ 1, 15, I};} which
partitions the 1mage into 3 regions: foreground,
background, unknown.

(a) Image with seeds. (d) Segmentation results.
Y)

Background Background

® terminal @ terminal

W
Object
tarminal

(b) Graph. (¢) Cut.

¥

Object
tenninal

Graph cuts

BoyKoeyviandJdolly(20041)

Foreground

Image (source)

ViRt Cut

O)

Background
(sink)

Cut: separating source and sink; Energy: collection of edges

Min Cut: Global minimal enegry in polynomial time

Source: Rother

Optimization Formulation - Boykov & Jolly ‘01

E(A) = X -R(A)+ B(A) = A—PVOPOS?d
Segmentation

=] E(A) — Overall Energy
=] R(A) — Degree to

where

R(A) = > Rp(4,)

peP

B(A) = 3 By -0(4, A which pixels fits
{p.a}eN model
and "] B(A) — Degree to

L 1 1A, # A,
0Ap, Ag) = { 0 otherwise.

Av/hich the cuts breaks

up similar pixels
=] - Balance A() and B()

* Goal: Find Segmentation,
A, which minimizes E(A)

Link Weights

edge weight (cost) for
ip.q} Bipgy {p.q} eN
A Ry(“bkg”) | peP, pgOURB
{p. 5} K pe0O
0 peb
A-Ry(fobg”) | peP,pgOURB
{p, T} 0 peO
K peb
K =1+ 1;&1;{ Z Bip.gy

q: {p.q}eN

* Pixel links based
on
color/intensity
similarities

* Source/Target
links based on
histogram
models of
fore/background

R,(“obj”) = —InPr(I,|0O)
R,(“bkg”) = —InPr(l,|B).

(Ip — Ig)* !
{pa} =€ “p()72 dist(p.q)

Grab cuts and graph cuts

Magic Wand
(198?)

Regions

Intelligent Scissors
Mortensen and Barrett (1995)

GrabCut

1’/\‘- pize
> "‘?f“’\‘
. S 2

AL,
< ‘g(l' | l\

LAY

Bduhdary Regions & Boundary

Source: Rother

* The image 1s an array 7 = (z,,...z,) of grey
values indexed by the single index n.

* The segmentation of the image 1s an alpha-
channel, or, a series of opacity values
o=(0y,..., oy) at each pixel with 0 <o <I.

* The parameter 0 describes the
foreground/background grey-level
distributions. 1.e. a pair of histogram of gray
values:

0=1{h(z;0),00=0,1} {mmd

Segmentation by Energy Minimization

* An energy function E 1s defined so that its
minimum corresponds to a good segmentation.
» This 1s captured by a “Gibbs” energy of the
form:
E(a,0,z) = U(a.0,z) + V(0.z)

E(a,0,z) = U(a.,0,2) + V(0.2)

« U evaluates the fit of the opacity a to the data z

» 1.e. 1t gives a good score (low score) if a looks like 1t’s
consistent with the histogram.

U(a,6,z)= Z —logh(z,;ex)

* V is a smoothness term which penalizes 1f there 1s too
much disparity between neighboring pixel values.

V(Q:Z) =7 Z diS(i}’lJl)_l [OC,? # am} CXPp _B(Zm _312)2:
(m.n)eC

E(a,0.z) = U(a.,0,z) + V(0,z)

* Given the energy model we can obtain a
segmentation by finding

o = argmin £ (¢, 0)

* Which can be solved using a mimimum cut
algorithm which gives you a hard
segmentation, a = {0,1}, of the object.

How GrabCut adds to Graph Cut

* The monochrome 1mage model 1s replaced for
color by a Gaussian Mixture Model (GMM) 1n
place of histograms.

* One shot min-cut solution 1s replaced by an
iterative procedure that alternates between
estimation and parameter learning

« Allow for incomplete labeling, 1.e. the user
need only specity the background trimap 77
(and implicitly the unknown map 77,)

» This amounts to one less user interaction step that was
required in previous versions.

From this ...

[Specifying foreground and background]

To this ...

[Specifying background only]

Adding the Color Model

» Each pixel z, 1s now in RGB color space

* Color space histograms are impractical so we use a
(Gaussian Mixture Model (GMM)

» 2 Full-covariance Gaussian mixtures with K components
(K~5).

» One for foreground, one for background.
* Add to our model a vector k ={ k, ... k), with k; in
(1 K}
* k; assigns the pixel z; to a unique GMM component
(Either from F.G. or B.G. as a dictates)

Colour Moedel

“
o LTV

R
Foreground & lterated

Background graph cut
fiy

|7

Background (G

~” Background G

Gaussian Mixture Model (typically 5-8 components)

Source: Rother

New Energy Model

* Must incorporate k imnto our model:

E(0.k.0.z) =U(0.k,0.2) + V(0.z)
where

LT(ILI(,BJ) = Z n D(un'kme*zn)

. D([I k 6 .z): - lﬂg p(zn‘ o,k B) o IDg H(U'n'ku)

n*m:* mn*n n* n?
« Where n(-) 1s a set of mixture weights which satisty the
constraint:

|
D(aﬂ:k}hgaza‘?) — —logir(a”,kn) + E logdetZ(an,k”)

1

-|—§ [Zn — JLL((X,“/{H)}TZ((X,“]{H)_I [Z” o Ju(a”’k”)}'

New Energy Model

e Our 9 becomes

O=1r(a.k), u(a,k), X(ok), o=0,1, k=1...K}

DL

weights means cov. fa/bg. mixture
component

» Total of 2K Gaussian components

Automatic

L
Segmentation
Usel
\nteraction
Automatic
>

Segmentation

Initialisation

o User initialises trimap T by supplying only Tg. The fore-
ground is set to Tp =0; Ty =T g, complement of the back-
ground.

e Initialise o =0forneTp and o = 1 form e Ty

e Background and foreground GMMs initialised from sets
oty = 0 and ¢, = 1 respectively.

Iterative minimisation

1. Assien GMM components to pixels: foreach n in Ty,
ky:= argnginﬂn{amkﬂ, B.zn).

2. Learn GMM parameters from data z:
& :—argminU(a.k.8,7)

3. Estimate segmentation: use min cut to solve:

min min E(e, Kk, 8,7).
{ogy: neTy }

4. Repeat from step 1, until convergence.

5. Apply border matting (section 4).

User editing

e Edir: fix some pixels either to ¢, = 0 (background brush)
or ¢y = 1 (foreground brush); update trimap T accord-
ingly. Perform step 3 above, just once.

e Refine operation: [optional] perform entire iterative min-
imisation algorithm.

Moderately: straightforward

exam p I eS SIGGRAPH2004
pe—=1
=

-

... GrabCut completes automatically

jcrosoft’ [
Eaimbn ge GrabCut - Interactive Foreground Extraction 10

Difficult Examples

Initial
Rectangle ,

Initial
Result

Camouflage &

Fine structure Harder Case
Low Contrast
nf 1y Fa% ‘
L et it A
t%\ -., ‘.: % = ""“F M\\l :
,‘p}” g &, = I '\.\\‘m 2
f};‘a- Wl e p T

|

icrosoft
gambn ge

GrabCut — Interactive Foreground Extraction

L

Hard Segmentation

Border Matting

Automatic Trimap Soft Segmentation

to

icrosoft®
gambn ge

GrabCut — Interactive Foreground Extraction

23

Comparison

With no regularisation over alpha

Input Bayes Matting Knockout 2
Chuang et. al. (2001) Photoshop Plug-In

Shum et. al. (2004): Coherence matting in “Pop-up light fields”

jcrosoft’ .
Fa‘m“b“r'a. ge GrabCut — Interactive Foreground Extraction 24

Natural Image Matting

Mean Colour
Foreground

Mean Colour
Background

Solve

Ruzon and Tomasi (2000): Alpha estimation in natural images

jicrosoft’
Nﬁe%%?nﬁ!age GrabCut — Interactive Foreground Extraction

25

Figure 6: Border matting. (a) Original image with trumap over-
laid. (b) Notation for contour parameterisation and distance map.
Contour C (yellow) 1s obtained from hard segmentation. Each pixel
in 777 1s assigned values (integer) of contour parameter ¢ and dis-
tance r;, from C. Pixels shown share the same value of 7. (¢) Soft
step-function for a-profile g, with centre A and width 0.

Border Matting

0]
Foreground

Fit a smooth alpha-profile with parameters

Background

icrosoft
gambn ge

GrabCut — Interactive Foreground Extraction

26

Dynamic Programming

Result using DP Border Matting

T
Z Dy(ay,) + Z V(At, O, At+1,0141)
=1

ncly

Noisy alpha-profile Regularisation

icrosoft
gambn ge

GrabCut — Interactive Foreground Extraction

27

GrabCut Border Matting - Colour

m Compute MAP of p(F|C,alpha) (marginalize over B)

m To avoid colour bleeding use colour stealing
(“exemplar based inpainting” — Patches do not work)

[Chuang et al. ‘01] Grabcut Border Matting

jcrosoft’
oo ge GrabCut — Interactive Foreground Extraction

28

Results

icrosoft
gambn ge

GrabCut — Interactive Foreground Extraction

29

